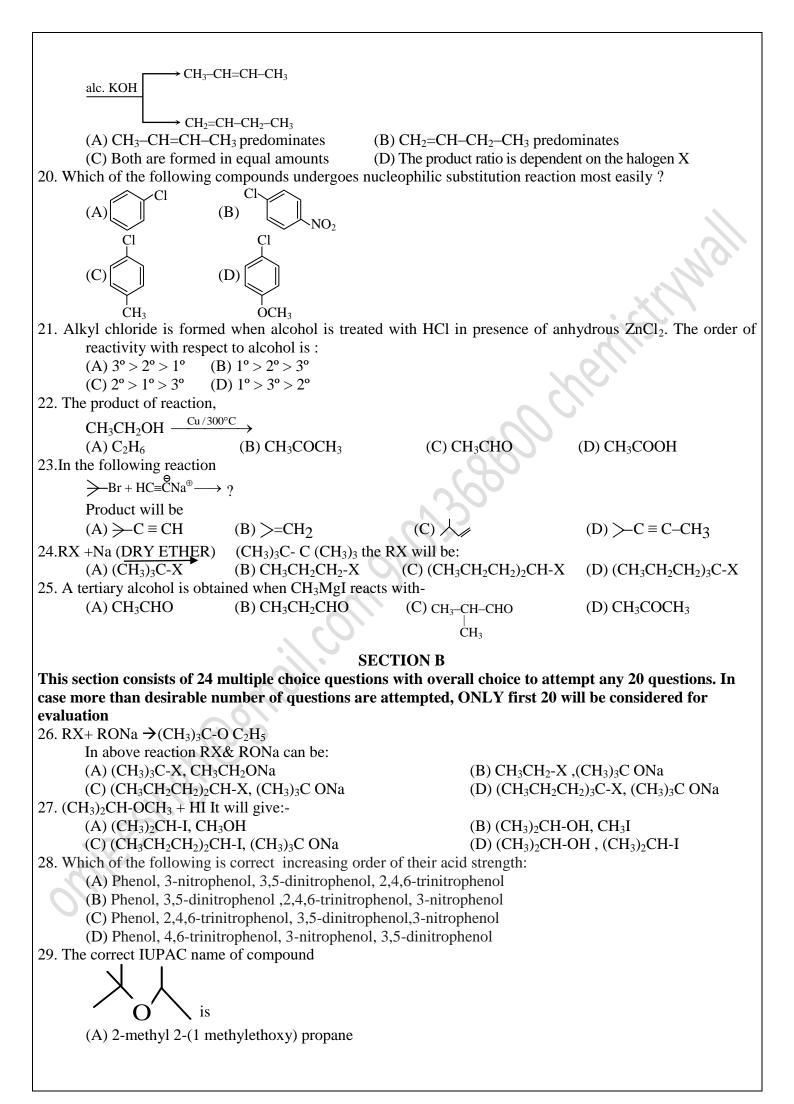
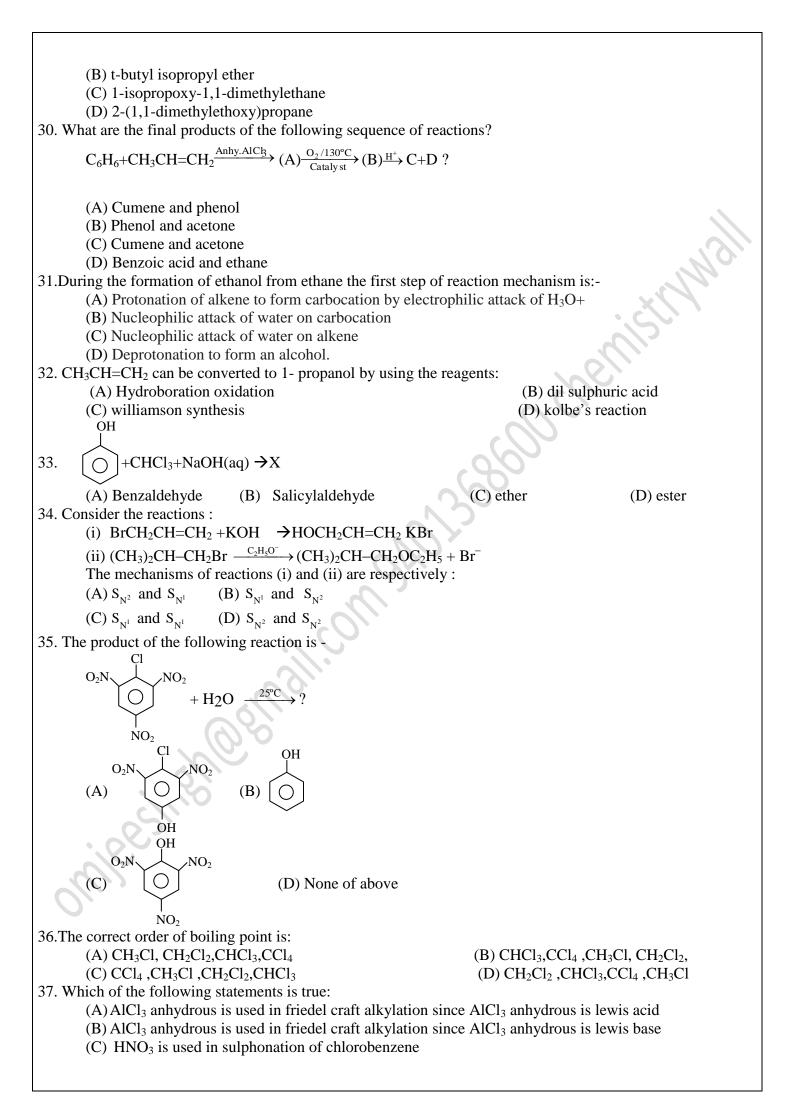
Term- 1 EXAMINATION SESSION 2021-22

SET – A

Class: 12 th	Subject: Chemistry (043)	Max. Marks: 35	Duration: 90 Minutes
Name:	Roll No:	Section:	Invigilator's Sign:

General instructions:


- 1. Use black or blue ball point pens, and avoid gel pens and fountain pens for filling the sheets.
- 2. Darken the bubbles completely. Don't put a tick mark or a cross mark where it is specified that you fill the bubbles completely. Half-filled or over-filled bubbles will not be marked by the teacher.
- 3. Never use pencils to mark your answers unless specified, in which case just stick to HB or 2B pencils only.
- 4. Never use whiteners to rectify filling errors as they may disrupt the evaluation process.
- 5. Writing on the OMR Sheet is permitted on the specified area only and even small mark on other than specified area may create problem during the evaluation.
- 6. There are some areas on OMR sheets where candidates are instructed not to write anything.
- 7. Do not fold the OMR Sheet.
- 8. Multiple markings are invalid.
- 9. Ensure that the invigilator has signed your OMR Answer Sheet.
- 10. If student has not filled his Roll Number then Answer sheet will not be evaluated.
- The Question Paper contains three sections. Section A has 25 questions. Attempt any 20 questions. Section B has 24 questions. Attempt any 20 questions. Section C has 6 questions. Attempt any 5 questions. All questions carry equal marks. There is no negative marking.


SECTION A

This section consists of 25multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

1. The formation of O^{2+} [PtF ₆] ⁻ is the basis for the formation of xenon fluorides. This is because :								
(A) O_2 and Xe have comparable sizes.								
(B) both O_2 and Xe are gases.								
	(C) O_2 and Xe have comparable ionisation energies.							
(D) O_2 and Xe have comparable electronegativities.								
2. When F_2 is passed into a solution of mineral acid X, a greenish yellow gas Y is formed. Which on treating								
with slaked lime forms "Z". When Red litmus is kept in contact with Z, it changes into								
(A) Blue colour		(B) No change in colour						
(C) White in colour		(D) None of these						
3. $NH_3(excess) + Cl_2 \rightarrow N$	$H_4Cl + A(gas)$							
	$NH_3 + Cl_2(excess) \rightarrow B + HCl$							
Incorrect statement regarding A and B.								
(A) A is highly reactive gas at room temperature.								
(B) Bond order of gas 'A' is same as C_2^{2-} .								
(C) Compound 'B' is explosive.								
(D) Bond angle of compound B is greater than bond angle of NF_3								
4. Which one has the lowest boiling	-							
$(A) NH_3 (B) PH$		(C) AsH_3	(D) SbH_3					
5. Which of the following is obtained when gold is treated with aquaregia.?								
$(A) AuCl_4 (B) Au$	ıCl ₃	(C) $[AuCl_4]^-$	(D) $[AuCl_4]^+$					
6. Which of the following is most reactive?								
$(A) I_2 \qquad (B) Cl_2$	(C) Br_2	(D) ClH	7					

7. When ozone reacts with an excess of salt (X) solution buffered with a borate buffer (pH 9.2) Y (violet colour) is liberated which can be titrated against a standard solution of sodium thiosulphate, this is a quantitative method for estimating O₃ gas. The X,Y are: (A) potassium iodide (B) I₂ (D) sodium sulphate (C) both (A) and (B) 8. Which of the following is not the method of preparation of Cl_2 gas? (A) Deacons process $(B)MnO_2 + HCl$ (C) $KMnO_4 + HCl$ (D) $K_2Cr_2O_7 + NaCl + H_2SO_4$ 9. Correct order of acidic nature will be: (A) HClO, HClO₂, HClO₄, HClO₃ (B) HOF, HClO, HBrO, HIO, (C) HClO₃, HIO₃, HBrO₃ (D) HF, HBr, HCl, HI 10. The order of reactivity of alkyl halides towards elimination reaction is : °°°°3>2>1 °2>1>3 (A) **(B)** °3>1>2 ° 1>2>3 (C) (D) HNO_2 (0 to 5 deg cel) water 11. The end product "Y" in the following reaction, aniline -Methyl amine (B) Acetamide (A) (C) Phenol (D) Propylamine 12. $C_2H_5I \xrightarrow{AgNO_2} X(major product)$ there X is (A) $C_{2}H_{5}-O-N=O$ **(B)** (C) $C_2H_5 - N = O$ (D) $C_2H_5 - N = N - C_2H_5$ The order of reactivities of the following alkyl halides for SN^2 reaction is: 13. (B) RF > RBr > RCl > RI(A)RF > RCl > RBr > RI(C) RCl > RBr > RF > RI(D) RI > RBr > RCl > RF14. SN^1 reaction of alkyl halides leads to (A) retention of configuration (B) inversion of configuration (D) none of the above (C) racemisation 15. Which of the following have highest dipole moment? (A) Cyclo hexane (B) chlorobenzene (C) vinyl chloride (D) CCl_4 16.CH₃CH=CH₂ + HBr in the presence of peroxide gives:-CH₃CHBrCH₂ (B) CH₃CHBrCH₃ (A) CH₃CH₂CH₂Br (D)CH₃CH₂CH₂CH₂Br (C) 17. The no. of chiral centre in given is : Cl (B) 3 (A) (D)1 (C) 18. Which of the following statement is correct -(A) Decreasing order of density of alkyl halides is RI > RBr > RCI > RF (B) (B)The stability order of alkyl halides is RF > RCl > RBr > RI(C) Among isomeric alkyl halides the decrease in boiling point and SN^2 $1^\circ > 2^\circ > 3^\circ$ (D) All are correct 19. For the reaction CH₃CH(X)CH₂CH₃

		prepare salicylic acid?		
(A) Kolbe's re	-		d reaction	
	iemann reaction		hen's reduction.	
	owing has the highest boil	/ 1		
$(A)H_2O$	(B)H ₂ S	(C)H ₂ Se	$(D)H_2Te$	
40. Covalency of nitro	ogen in N ₂ O ₅ restricted to:			
(A)2	(B)3	C)4	D)5	
41. Ozone is a/ an	molecule and th	e two O-O bond lengths in	ozone are (i)	and (ii)
(A) linear ,110)pm ; 148pm	(B) angular, 11	0pm ; 148pm	
(C)linear, 128	pm ; 128pm	(D)angular, 12	8pm ; 128pm	<i>1</i> 0.
42. Which one of the	following are correctly are	ranged on the basis of the pr	roperty indicated:	
	2 <cl<sub>2 [increasing bond dis</cl<sub>	1,		
	S <h2te<h2se [="" increasing<="" td=""><td>- U</td><td>•. 6</td><td></td></h2te<h2se>	- U	•. 6	
$(C) NH_3 < N_2 C$	$O < NH_2OH < N_2O_5$ [increa	sing oxidation state]		2
	I ₃ <ash<sub>3<ph<sub>3<nh<sub>3 [incre</nh<sub></ph<sub></ash<sub>	•		
		y arranged on the basis of th	ne property indicated	1:
	S <h<sub>2Te<h<sub>2Se [reducing]</h<sub></h<sub>	_		
		easing order of Lewis basici	ity]	
(C) $I_2 < Br_2 < F_2$	2 <cl<sub>2 [electron affinity]</cl<sub>			
(D) HI< HBr<	HF <hcl [="" stabilit<="" td="" thermal=""><td>y]</td><td><u> </u></td><td></td></hcl>	y]	<u> </u>	
	owing does not give N $_2$ ga	as on heating ?		
(A) $(NH_4)_2Cr$	$r_2 O_7$ (B) Ba(N ₃			
(C) NH_4NO_3	(D)NaN ₂			
45. Which of the follo	owing oxides of Nitrogen	is Neutral		
(A) N_2O_5	$(B) N_2 O_3$	(C) N_2	O_4	(D) N ₂ O
these Questions you	are required to choose a	ch, printed as "Assertion" ny one of the following res	sponses.	
these Questions you (A) If both Ass (B) If both Ass (C) If Assertion (D) If both Ass (C) If Assertion (D) If both Ass 46. Assertion : All the Reason : Haloge higher energy mod (A) A (B) E 47. Assertion : Betw Reason : SF ₄ is (A) A (B) E 48. Assertion (A) : Plenter (A) A (B) E 49. Assertion (A): Term (A) A (B) E 49. Assertion (A): Term (A) A (B) E 49. Assertion (A): Term (A) A (B) E 50. Assertion: Phenometer (A) A (B) E (A)	are required to choose a sertion and Reason are Tru- sertion and Reason are Tru- on is True but the Reason is sertion and Reason are fa- he halogens are coloured. En molecules absorb some olecular orbitals. B (C) C (D) D ween SF ₄ and SF ₆ , only SF sp ³ d and SF ₆ is sp ³ d ² hyb B (C) C (D) D henol is stronger acid than noxide ion is less stable th B (C) C (D) D ertiary butyl chloride show tiary butyl chloride is less B (C) C (D) D l react with aq Br ₂ to give	ny one of the following results and the Reason is a correct is but Reason is not correct is False. Ise. wavelengths of visible lights F_4 reacts with water. ridised. a ethanol. an ethoxide ion. F_5 SN ¹ reaction with alcohological reactive than n-butyl chloride 2,4,6 tribromophenol a whith	sponses. Act explanation of the explanation of the A ht and the electrons lic KOH. de towards SN ¹ reac	e Assertion. Assertion
these Questions you (A) If both Ass (B) If both Ass (C) If Assertion (D) If both Ass (C) If Assertion (D) If both Ass (C) If Assertion (D) If both Ass (A) A (B) E (A) A (B) E (B) Assertion: Pheno Reason: -OH group	are required to choose a sertion and Reason are Tru- sertion and Reason are Tru- on is True but the Reason is sertion and Reason are fa- he halogens are coloured. En molecules absorb some olecular orbitals. B (C) C (D) D ween SF ₄ and SF ₆ , only SF sp ³ d and SF ₆ is sp ³ d ² hyb B (C) C (D) D henol is stronger acid than noxide ion is less stable th B (C) C (D) D ertiary butyl chloride show tiary butyl chloride is less B (C) C (D) D l react with aq Br ₂ to give up in phenol is highly acti	ny one of the following results and the Reason is a correct is but Reason is not correct is False. Ise. wavelengths of visible lights F_4 reacts with water. ridised. a ethanol. an ethoxide ion. F_5 SN ¹ reaction with alcohological reactive than n-butyl chloride 2,4,6 tribromophenol a whith	sponses. Act explanation of the explanation of the A ht and the electrons lic KOH. de towards SN ¹ reac	e Assertion. Assertion
these Questions you (A) If both Ass (B) If both Ass (C) If Assertion (D) If both Ass (C) If Assertion (D) If both Ass 46. Assertion : All the Reason : Haloge higher energy mod (A) A (B) E 47. Assertion : Betw Reason : SF ₄ is (A) A (B) E 48. Assertion (A) : Plenter (A) A (B) E 49. Assertion (A): Term (A) A (B) E 49. Assertion (A): Term (A) A (B) E 49. Assertion (A): Term (A) A (B) E 50. Assertion: Phenometer (A) A (B) E (A)	are required to choose a sertion and Reason are Tru- sertion and Reason are Tru- on is True but the Reason is sertion and Reason are fa- he halogens are coloured. En molecules absorb some olecular orbitals. B (C) C (D) D ween SF ₄ and SF ₆ , only SF sp ³ d and SF ₆ is sp ³ d ² hyb B (C) C (D) D henol is stronger acid than noxide ion is less stable th B (C) C (D) D ertiary butyl chloride show tiary butyl chloride is less B (C) C (D) D l react with aq Br ₂ to give up in phenol is highly acti	ny one of the following results and the Reason is a correct is but Reason is not correct is False. Ise. wavelengths of visible lights F_4 reacts with water. ridised. a ethanol. an ethoxide ion. F_5 SN ¹ reaction with alcohological reactive than n-butyl chloride 2,4,6 tribromophenol a whith	sponses. Act explanation of the explanation of the A ht and the electrons lic KOH. de towards SN ¹ reac	e Assertion. Assertion

than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation. 51. Match the types of defects given in column I with the statement given in column II.

Select the correct matching -

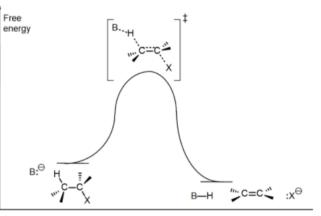
Column I		-	Colur	mn II	
A : X	eF ₄		i. Pyra	amidal	
B : XeF ₆ C : XeO ₃ D : XeOF ₂			ii. T-shape iii _. Distorted octahedral		
			iv. Square planar		
	А	В	С	D	
(A)	iv	iii	i	ii	
(B)	i	ii	iii	iv	
(C)	ii	i	iii	iv	
(D)	iv	i	iii	ii	

52. Complete the following analogy:

In BrF₃: 1(lone pair) + 3 (bond pair),Bent T shape :: In XeF₂ :?

(A)2(lone pair) + 4 (bond pair),tetrahedral shape

(B) 2(lone pair) + 4 (bond pair), square planner shape


(C) 3(lone pair) + 2 (bond pair), linear shape

(D) 3(lone pair) + 2 (bond pair), angular shape

CASE 1:- Read the passage given below and answer the following questions 53 - 55:

- A strong base is necessary especially necessary for primary alkyl halides. Secondary and tertiary primary halides will procede with E2 in the presence of a base (OH-, RO-, R₂N-)
- Both leaving groups (the H and the X) should be on the same plane, this allows the double bond to form in the reaction. In the reaction above you can see both leaving groups are in the plane of the carbons.
- Follows <u>Zaitsev's rule</u>, the most substituted alkene is usually the major product.
- Hoffman Rule, if a sterically hindered base will result in the least substituted product.

The reaction coordinate free energy diagram for an E2 reaction shows a concerted reaction:

- 53. 2-Bromobutane on heating with alcoholic alkali forms -
 - (A) 1 Butylene only
 - (B) 2 Butylene only
 - (C) 20% of 1-Butylene+ 80% of 2-Butylene
 - (D) 80% 1-Butylene + 20% 2-Butylene

54. Among the following the most reactive towards alcoholic KOH is

- $(A) CH_2 = CHBr (B) CH_3 COCH_2 CH_2 Br$
- $(C) CH_3 CH_2 Br (D) CH_3 CH_2 CH_2 Br$

55. Tertiary alkyl halides are practically inert to substitution by $S_N 2$ mechanism because of -

- (A) instability
- (C) steric hindrance

- (B) insolubility
- (D) inductive effect